Bounds for Coefficients of Cusp Forms and Extremal Lattices

نویسندگان

  • PAUL JENKINS
  • JEREMY ROUSE
چکیده

A cusp form f(z) of weight k for SL2(Z) is determined uniquely by its first ` := dimSk Fourier coefficients. We derive an explicit bound on the nth coefficient of f in terms of its first ` coefficients. We use this result to study the nonnegativity of the coefficients of the unique modular form of weight k with Fourier expansion Fk,0(z) = 1 + O(q ). In particular, we show that k = 81632 is the largest weight for which all the coefficients of Fk,0(z) are non-negative. This result has applications to the theory of extremal lattices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Twisted Motohashi Formula and Weyl-subconvexity for L-functions of Weight Two Cusp Forms

We derive a Motohashi-type formula for the cubic moment of central values of L-functions of level q cusp forms twisted by quadratic characters of conductor q, previously studied by Conrey and Iwaniec and Young. Corollaries of this formula include Weylsubconvex bounds for L-functions of weight two cusp forms twisted by quadratic characters, and estimates towards the Ramanujan-Petersson conjectur...

متن کامل

Rankin-selberg without Unfolding and Bounds for Spherical Fourier Coefficients of Maass Forms

We use the uniqueness of various invariant functionals on irreducible unitary representations of PGL2(R) in order to deduce the classical Rankin-Selberg identity for the sum of Fourier coefficients of Maass cusp forms and its new anisotropic analog. We deduce from these formulas non-trivial bounds for the corresponding unipotent and spherical Fourier coefficients of Maass forms. As an applicati...

متن کامل

S-extremal strongly modular lattices

S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only fin...

متن کامل

S - extremal strongly modular lattices par

S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only fin...

متن کامل

Fourier Coefficients of Hilbert Cusp Forms Associated with Mixed Hilbert Cusp Forms

We express the Fourier coefficients of the Hilbert cusp form Lhf associated with mixed Hilbert cusp forms f and h in terms of the Fourier coefficients of a certain periodic function determined by f and h. We also obtain an expression of each Fourier coefficient of Lhf as an infinite series involving the Fourier coefficients of f and h.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011